Grant Agreement n.:
End Date: 30-04-2019
Start Date: 01-05-2015
Economic Cooling and Heating
Project Title: Geothermal Technology for economic Cooling and Heating
Project Acronym: GEOTeCH
Project Title: Geothermal Technology for Economic Cooling and Heating
Start Date: 03-05-2015
End Date: 30-04-2019
Grant Agreement n.: 656889

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 656889.

GEOTeCH
www.geotech-project.eu

- Drilling equipment
- Ground Heat Exchanger
- Heat Pump prototypes
- Plug and play energy management systems

Operational Complexity

Operating geothermal/heating and cooling systems to achieve peak energy efficiency requires successful control system integration.

Design Complexity

Innovation in the design process and better management of design risks are required.

Construction Management Complexity

Vertical borehole heat exchangers are the most appropriate form of ground heat exchanger in approximately 80% of applications. Drilling technology, installation capacity, and expertise have been transferred from other industries, due to the market growth since the 1990s in geothermal heating and cooling.

Borehole drilling technology

Dripping concept based on dry auger methods will enable:
- compact equipment capable of working in restricted areas
- very low noise and pollutant emissions
- high stability borehole capable of drilling near foundations and structures
- low (clean) water usage

Vertical borehole heat exchangers

The innovative spiral co-axial vertical borehole heat exchanger technology will enable:
- improved thermal performance that allow designers to be delivered using shorter boreholes
- improved hydraulic performance and lower pump energy costs, emissions
- improved short-timescale response and thermal storage capacity
- complete integration with the innovative dry auger-based drilling technology

Foundation heat exchangers

Systematic development of foundation heat exchanger design, fabrication and integration methods result in:
- more accurate predictions of thermal behaviour
- design risk reduction and wider range of configurations
- higher levels of optimization with regard to structural stability/integrity and thermal performance
- economic optimization of fabrication and installation methods

Building energy management and control systems

- Whole system geothermal heating and cooling solutions management
- foundation heat exchanger technology integration with other heating/cooling sources
- interactions between the building, the heat pumps, the ground heat exchangers and control systems
- energy costs reduction maintaining the comfort conditions within given thresholds

Demo Site

Validate the overall performance on different demonstration sites:
- Leicester small-scale house
- Barcelona large-scale tertiary building
- Amsterdam small-scale office building
- Padova small-scale office building